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Lorentz torque on a charged sphere rotating in a dielectric fluid in the presence
of a uniform magnetic field
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DLR, Deutsches Zentrum fu¨r Luft- und Raumfahrt e.V., Linder Ho¨he, 51140 Ko¨ln, Germany
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Institut für Theoretische Physik A, RWTH Aachen, Templergraben 55, 52056 Aachen, Germany

~Received 31 August 1999!

The Lorentz torque exerted by a uniform magnetic field on a charged sphere rotating steadily in a dielectric
fluid is calculated to first order in the charge. For a strongly polar fluid and stick boundary conditions the
torque is enhanced significantly with respect to its vacuum value. The modification from the vacuum value
depends only on the static dielectric constant of the fluid and on the slip parameter. It is independent of the
dielectric response of the sphere and of the shape of the radial charge distribution. There is a nonvanishing
Lorentz torque, even when the charge is concentrated in the center of the sphere.

PACS number~s!: 41.20.2q, 47.65.1a, 77.90.1k
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I. INTRODUCTION

The dynamics of polar liquids in interaction with the ele
tromagnetic field is of theoretical as well as technologi
interest @1,2#. To advance understanding of these comp
cated systems it is useful to consider simple model situat
that can be analyzed theoretically in full detail. A simp
situation of interest is the motion of a charged sphere i
dielectric fluid. For simplicity, the fluid may be assumed
be incompressible and viscous.

A charged sphere moving in a dielectric fluid experienc
dielectric friction, aside from the usual Stokes friction, due
the relaxation of polarization. If in addition an external ma
netic field is applied, then interesting coupling effects ari
In a theory of the Hall effect in dielectric fluids, we hav
found earlier that the Lorentz force is strongly reduced by
presence of the dielectric fluid@3#. In the following we show
that, on the contrary, the Lorentz torque on a rotat
charged sphere is significantly enhanced.

First, we recall known theoretical results on dielect
friction and the Hall effect in polar liquids. Thus we consid
a nonmagnetic sphere of radiusa, chargeQ, immersed in an
incompressible polar fluid of infinite extent and in the pre
ence of an applied uniform magnetic fieldB0 . The dielectric
response of the fluid is characterized by a frequen
dependent dielectric constant«~v!. If the sphere moves
steadily with translational velocityU, then the force exerted
on it is given by

F52z tU1ht

Q

c
U3B0 , ~1.1!

wherez t is the translational friction coefficient,ht is the Hall
number, andc is the velocity of light in vacuum. The coef
ficients z t and ht depend on the hydrodynamic bounda
conditions applied at the surface of the sphere. The frict
coefficient z t has been calculated@4# as a function of the
chargeQ. To second order in the charge it is given by@5#
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a3 1O~Q4!, ~1.2!

where the first term is the usual Stokes contribution fo
neutral sphere. Hereh is the shear viscosity of the fluid, an
j is the slip parameter taking the valuej50 for stick and
j5 1

3 for perfect slip boundary condition. The coefficie
«05«(0) is the value of the dielectric constant at zero fr
quency, and the coefficient«̂0 is defined by

«̂05 lim
v→0

«~v!2«~0!

iv
. ~1.3!

The coefficientCt was found to be@5#

Ct5
1

280@17254j1177j2#. ~1.4!

This value agrees with an earlier result of Hubbard and O
sager@6# for perfect stick (j50) and perfect slip (j5 1

3 ), but
differs for intermediate values 0,j, 1

3 of the slip parameter
due to the use of a different boundary condition. One of
has argued that the discontinuity of the electrostatic str
tensor must be accounted for in the boundary condition@5#.
It was shown later that the modified boundary condition
consistent with Onsager symmetry@7#.

The Hall numberht in Eq. ~1.1! has been evaluated t
zeroth order in the charge@9#. We foundht5ht

(0)1O(Q2)
with

ht
~0!512C~j!

«021

«0
~1.5!

with coefficient

C~j!5 7
16 2 3

16 j2. ~1.6!

This shows a strong reduction of the Lorentz force from
vacuum value in a strongly polarizable fluid with«0@1. We
7309 ©2000 The American Physical Society
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7310 PRE 62H. J. KROH AND B. U. FELDERHOF
have compared with earlier theoretical results@8#. The Hall
effect in electrolyte solutions has been measured by Ge´rard
et al. @9#.

In the following, we consider a sphere rotating stead
with angular velocityV. The torque exerted on the sphere
given by

T52z rV1hrTLa , ~1.7!

wherez r is the rotational friction coefficient,hr is the rota-
tional Hall number, andTLa is the Lorentz torque exerted b
the magnetic field if the sphere were in vacuum with t
charge concentrated on its surface,

TLa5
1

3c
Qa2V3B0 . ~1.8!

The rotational friction coefficientz r has been calculated as
function of the charge@10#. To second order in the charge
is given by

z r58pha3~123j!1Cr

«̂0

«0
2

Q2

a
1O~Q4!, ~1.9!

where the first term is the usual Stokes contribution fo
neutral sphere. The coefficientCr was found to be@10#

Cr5
3

14 ~123j!2. ~1.10!

In the following, we calculate the rotational Hall numb
hr5hr

(0)1O(Q2) to lowest order in the charge. We find th
for a strongly polarizable fluid with«0@1 the Lorentz torque
is enhanced by about 50% from its vacuum value if
charge is concentrated on the surface of the sphere. The
culation follows similar lines as that for the translational H
numberht

(0) .

II. BASIC EQUATIONS

We have shown in Ref.@11# on the basis of the de Groot
Mazur equations@12,13# that in a steady-state situation th
total momentum balance equation for fluid and electrom
netic fields is given by

“•~rvv!2“•~shyd
S 1sem

S !50, ~2.1!

wherer is the mass density,v(r) is the flow velocity, and
shyd

S andsem
S are the symmetric parts of the hydrodynam

and electromagnetic stress tensor. The symmetrized hy
dynamic stress tensor is given by

shyd,ab
S 5h~]avb1]bva!2pdab , ~2.2!

where p is the pressure. The symmetrized electromagn
stress tensor is

sem
S 5

1

8p
@DE1ED1BH1HB2~D•E1B•H!1#

1
1

2c
v~P3B!1

1

2c
~P3B!v. ~2.3!
a
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The dielectric displacementD is related to the electric fieldE
and the polarizationP by

D5E14pP. ~2.4!

The magnetic inductionB is related to the magnetic fieldH
and the magnetizationM by

B5H14pM. ~2.5!

In the derivation of Eq.~2.3!, crucial use is made of irrevers
ible thermodynamics@12#. The last two terms on the right
hand side are necessary to guarantee a positive entropy
duction and a properly Galilei invariant torque density@13#.
Intrinsic rotation of the fluid molecules has been taken in
account. In the steady-state limit, considered here, the a
age intrinsic angular momentum has relaxed to a cons
value determined by the local torque density and the ro
tional viscosity of the fluid. As a consequence, the antisy
metric parts of the hydrodynamic and electromagnetic str
tensor cancel, and only the symmetric parts remain in
~2.1!. Other proposals made for the electromagnetic str
tensor violate Galilei invariance of the torque density, a
have not been shown to guarantee a positive entropy pro
tion in combination with phenomenological relaxation equ
tions. Therefore we consider in the following only the for
Eq. ~2.3!. For further details we refer the reader to Ref.@13#.

In the fluid the fields satisfy the static Maxwell equatio

“•D50, “•B50,
~2.6!

“3E50, “3H50.

These equations must be supplemented with constitu
equations for polarization and magnetization. The magn
zation is given by@14#

M52
1

c
v3P. ~2.7!

We have omitted terms of the form (v/c)M3E from Eq.
~2.3! since these are of orderv2/c2. The polarization is given
by

P5k0S E1
1

c
v3BD1d̂ f , ~2.8!

wherek05k(0) is the zero-frequency susceptibility, whic
is related to the dielectric constant by«(v)5114pk(v).
The last term in Eq.~2.8! is the additional polarization due t
transport by the flow. The detailed expression up to ter
linear in V will be given below.

We take the sphere to be centered at the origin. We reg
the steady rotational velocityV as a small quantity and lin
earize the equations in terms of it. To lowest order, both
sphere and the fluid are at rest. In this situation the dielec
displacementD0 and the electric fieldE0 in the fluid are
given by

D05Q
r̂

r 2 , E05
Q

«0

r̂

r 2 ~r .a!, ~2.9!

and the polarizationP0 is given by
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P05
k0

«0
Q

r̂

r 2 ~r .a!. ~2.10!

The zeroth-order magnetic field isH05B0 . The unperturbed
fluid velocity v0 and the additional polarizationd̂0

f vanish
identically.

Quantities linear inV are denoted by a subscript 1. Sin
v050, the linearized momentum balance equation~2.1! be-
comes

h“2v12“p152G1 , ~2.11!

whereG1 is defined by

G15“•sem,1
S . ~2.12!

We may formally regardG1(r) as a force density acting o
the fluid. The pressurep1 follows from the condition of in-
compressibility“•v150. The first-order fieldsD1 , E1 , B1 ,
and H1 satisfy the Maxwell equations~2.6!. The first-order
magnetization is given by

M152
1

c
v13P0 . ~2.13!

The first-order polarization is given by

P15k0S E11
1

c
v13B0D1d̂1

f , ~2.14!

with the additional polarization@11#

d̂1
f 52

«̂0

4p
@~v1"“ !E02 1

2 ~“3v1!3E0#. ~2.15!

We have shown in Ref.@14# that, when terms of order 1/c2

are neglected and use is made of the uniformity ofB0 and the
condition of incompressibility, the expression for the for
density is found to be

G152 1
2 E0~“"d̂1

f !2 1
2 E03~“3d̂1

f !1
k0

c
@~“3v1!

3~E03B0!2B03~v1"“ !E0#. ~2.16!

The fluid equation of motion~2.11! must be supplemente
with a boundary condition for the fluid velocity at the surfa
of the sphere. Since the fluid cannot penetrate the sphere
radial component of the fluid velocityv1r must vanish atr
5a. A natural generalization of the usual tangential con
tion is @4#

v1t5
l

h
@ r̂•~shyd,1

S 1sem,1
S ! t#, ~2.17!

wherel is a proportionality constant taking the value 0 f
stick and` for perfect slip. The slip parameterj in Eq. ~1.2!
is related tol by j5l/(a13l). The square brackets in Eq
~2.17! indicate the jump at the surfacer 5a. The solution of
Eq. ~2.11! with the above boundary conditions is equivale
to the solution of

h“2v12“p152F1~r!, ~2.18!
the

-

t

with the force density

F1~r!5G1~r!u~r 2a!1g1~ r̂!d~r 2a1 ! ~2.19!

and the usual hydrodynamic boundary conditions, provid
the surface force densityg1( r̂ ) is evaluated from

g1~ r̂!5@ r̂"sem,1
S #. ~2.20!

The surface force density was missing in the theory of H
bard and Onsager@6#.

Finally, we must specify the electrical properties of t
sphere. For conceptual clarity we assume that the cha
density and the polarization vanish identically in the sh
a2d,r ,a, whered may be infinitesimal. In this shell the
electromagnetic stress tensor takes the vacuum form an
automatically symmetric. We assume that the sphere
quadrupolar polarizabilitya2 .

III. TORQUE EXERTED ON THE SPHERE

The force and torque exerted on the sphere may be ev
ated from integrals of the stress tensor over a spherical
face Sa1 just enclosing it. To first order inV the force is
given by

F15E
Sa1

~shyd,1
S 1sem,1

S !• r̂ dS. ~3.1!

Using the momentum-balance equation for the fluid a
Gauss’ theorem, we may rewrite Eq.~3.1! in the form

F15E
S`

~shyd,1
S 1sem,1

S !• r̂ dS, ~3.2!

where the integral is over a spherical surface of arbitra
large radius. By spherical symmetry the force vanishes id
tically. Similarly, the first-order torque is

T15E
Sa1

r3@~shyd,1
s 1sem,1

S !• r̂#dS. ~3.3!

This may be transformed to

T15E
S`

r3@~shyd,1
S 1sem,1

S !• r̂#dS. ~3.4!

The equations presented in the preceding section c
pletely determine the problem. We shall not attempt to so
the equations exactly, but resort to a perturbation expan
in powers of the chargeQ. We show by explicit calculation
that to terms linear in the charge the forceF1 does indeed
vanish. The calculation ofT1 to terms linear inQ yields the
rotational Hall numberh1

(0) .
The first few terms in our perturbation expansion are

v15v1
~0!1v1

~1!1¯ ,

E15E1
~0!1E1

~1!1¯ , ~3.5!

B15B1
~1!1¯ ,
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where the superscript indicates the power of the chargeQ. It
follows from Eqs.~2.16! and~2.20! that the force densityG1

and the surface force densityg1 start with termsG1
(1) andg1

(1)

of first order in the charge. Hence to zeroth order the velo
field v1

(0) satisfies the homogeneous linear Navier-Sto
equations. These have the well-known solution

v1
~0!~r!5AT

V3 r̂

r 2 ~r .a!, ~3.6!

whereAT is a hydrodynamic scattering coefficient with th
value

AT5~123j!a3. ~3.7!

It follows from Eq. ~2.16! that the first-order force densit
G1

(1) is given by

G1
~1!5

k0Q

2e0c

AT

r 5 @6r̂V"~12 r̂ r̂!"B022V~ r̂"B0!12B0~ r̂"V!#.

~3.8!

In a volume element moving with the flow the applie
magnetic fieldB0 acts as an electric field polarizing the flui
The polarization in turn generates an electric field. To zer
order in the charge this electric fieldE1

(0) satisfies the equa
tions

“•E1
~0!52

4pk0

«0c
“•~v1

~0!3B0!,

~3.9!
“3E1

~0!50 @r .~a2d!#.

Inserting Eq.~3.6!, we find

“•~v1
~0!3B0!5

AT

r 3 @3~ r̂•V!~ r̂•B0!2V•B0#. ~3.10!

We write E1
(0)52¹f1

(0) and make the ansatz

f1
~0!5g~r !@3~r•V!~r•B0!2r 2V•B0#. ~3.11!

Substituting in Eq.~3.9!, we find the solution

g~r !52
2pk0

3«0c

AT

r 3 1
W

r 5 ~r .a!, ~3.12!

with a coefficientW that must be found by application of th
jump conditions atr 5a. In the neutral shell the radial func
tion must have the form

g~r !5YS a2

r 5 21D @~a2d!,r ,a#, ~3.13!

wherea2 is the quadrupolar polarizability of the sphere, a
Y is a second coefficient determined by the jump conditio
at r 5a. We do not need the explicit expressions forW and
Y.

The first-order surface force density

g1
~1!5@ r̂•sem,1

S~1! # ~3.14!

can now be calculated as in Sec. VI of@10#. We find
y
s

h

s

g1
~1!5

Q

4pa2 @E1
~0!~a1 !2E1

~0!~a2 !#. ~3.15!

With Eq. ~3.11! this becomes

g1
~1!5

Q

4p
@g8~a1 !2g8~a2 !#@V•B023~ r̂•V!~ r̂•B0!# r̂.

~3.16!

Together with the bulk force densityG1
(1) in Eq. ~3.8! this

can be used to calculate the first-order flow.

IV. FIRST-ORDER FLOW

We can now solve for the first-order flow velocityv1
(1)

from the linear Navier-Stokes equation~2.18! with inhomo-
geneous terms given by the volume force densityG1

(1) and
the surface force densityg1

(1) . To perform the calculation
explicitly it is necessary to expand the force densities
terms of vector spherical harmonics. We have demonstra
the technique in Sec. IX of Ref.@5#. The complete flow pat-
tern can be obtained, but for the calculation of the force a
torque on the sphere it suffices to find the asymptotic flo
This is of the form

v1
~1!~r!5

1

c
A1

~1!
~V3B0!3 r̂

r 2 1O~r 23!. ~4.1!

with the coefficientA1
(1) to be determined. A flow of the type

~4.1! can be generated only by vector spherical harmon
C1m of orderl 51. There are no harmonicsA1m andB1m of
orderl 51, so that the force on the sphere vanishes. In or
to determine the torque on the sphere, we must pick out
amplitudes of the harmonicsC1m in the force densities.

Since the flow is linear inV, we may consider separatel
the cases withViB0 andV'B0 . We consider first the cas
V'B0 and choose coordinates such thatV5Vey and B0
5B0ez . Then Eq.~3.8! becomes

G1
~1!5

k0Q

2«0c

AT

r 5 @6nynzr̂12nzey22nyez#VB0 ~4.2!

and Eq.~3.16! becomes

g1
~1!523

Q

4p
@g8~a1 !2g8~a2 !#nynzr̂VB0 . ~4.3!

We need the following three vector spherical harmonics
Cartesian coordinates@15#

A2g
ab53dag13dbg22ngdab ,

B2g
ab53dag13dbg13ngdab215nanbng , ~4.4!

C1g
a 5«gabnb ,

where the subscriptg denotes the vector component and t
superscripts label the harmonics. It may be seen that

nynzr̂5
1

15
~A2

yx2B2
yz!, ~4.5!
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nyez5
1

6
~A2

yz13C1
x!,

nzey5
1

6
~A2

yz23C1
x!,

with C1
x5ex3 r̂. Now it is evident that onlyG1

(1) contains a
vector spherical harmonic of order unity. A force dens
C1

xd(r 2s) causes a flow velocity

vc
1
x~r!5

1

3h F ru~s2r !1
s3

r 2 u~r 2s!2
AT

r 2 GC1
x ~r .a!.

~4.6!

From Eqs.~4.2! and~4.5! we find the contribution from dif-
ferent values ofs.

Next we consider the caseViB0 and choose coordinate
such thatV5Vez andB05B0ez . With the vector spherica
harmonicB̂05 r̂ we find

nz
2r̂5 1

15 ~A2
zz2B2

zz25B̂0!. ~4.7!

~We use a special notation for the spherical harmonicB̂0 to
distinguish from the magnetic field.! It is evident from Eqs.
~3.8! and~3.16! that for this case the force densities have
contribution from vector spherical harmonics of order uni

Combining the above results, we find for the coefficie
A1

(1) in Eq. ~4.1!,

A1
~1!5

k0Q

«0

AT

3ha S 12
AT

4a3D . ~4.8!

The coefficient vanishes for perfect slip, as one would
pect, since then there is no zero-order flow.

V. TORQUE ON THE SPHERE

The torque on the sphere is conveniently calculated fr
Eq. ~3.4!, since in contrast to Eq.~3.3! this requires knowl-
edge of only the asymptotic fields. We abbreviate Eq.~3.4!
as

T15T1,11T2,1. ~5.1!

Here, the first term

T1,15E
S`

r3~shyd,1
S

• r̂!dS ~5.2!

may be evaluated from the asymptotic flow calculated
Sec. IV. This yields to first order inQ

T1,1
~1!52

8p

c
hA1

~1!V3B0 . ~5.3!

The second term in Eq.~5.1!,

T2,15E
S`

r3~sem,1
S

• r̂!dS ~5.4!

may be evaluated from the contributions to the electrom
netic stress tensor listed in Eq.~3.17! of Ref. @3#. It is easily
.
t

-

n

-

seen that only the magnetic part of the stress tensor con
utes asymptotically, so that we get to first order in the cha

T 2,1
~1!5E

S`

r3~smag,1
S~1!

• r̂!dS ~5.5!

with the magnetic stress tensor

smag,1
S~1! 5

1

4p
@B0B1

~1!1B1
~1!B02~B0•B1

~1!!1#. ~5.6!

In order to evaluate the integral~5.5! it suffices to know the
asymptotic behavior of the magnetic inductionB1

(1) . This is
given by

B1
~1!~r!5

2113r̂ r̂

r 3 •m1
~1!1O~r 24!, ~5.7!

wherem1
(1) is the total magnetic moment to first order inV

andQ. Substituting into Eq.~5.6! we find from Eq.~5.5!

T 2,1
~1!5m1

~1!3B0 , ~5.8!

the usual expression for the torque exerted by a magn
field on a magnetic moment. The magnetic moment is giv
by

m1
~1!5

1

2c Er<a
r3~V3r!q~r !dr1E

r .a
M1

~1!dr, ~5.9!

whereq(r ) is the charge distribution of the sphere andM1
(1)

is the magnetization of the fluid following from Eq.~2.13!.
We write the first term as

1

2c Er<a
r3~V3r!q~r !dr5

1

3c
Qaq

2V. ~5.10!

If the charge is concentrated on the surface, thenaq5a.
From Eqs.~2.10!, ~2.13!, and~3.6! one finds for the second
term in Eq.~5.9!:

E
r .a

M1
~1!dr5

8p

3

k0Q

«0c

AT

a
V. ~5.11!

Altogether we find for the torqueT1 to first order in the
charge

T 1
~1!5

1

3c
Qa2h1

~0!V3B0 ~5.12!

with rotational Hall number

h1
~0!5

aq
2

a2 1
«021

2«0
~123j!2. ~5.13!

For «0@1 and the stick boundary condition this shows
significant enhancement with respect to the first term. Thi
in contrast to translational motion, where the Hall numb
ht

(0) is decreased from unity by the electromagnetohydro
namic coupling. Note that the torqueT1 is nonvanishing
even if the charge is concentrated in the center of the sph
For a macroscopic sphere the slip parameterj in Eq. ~5.13!
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must be put equal to zero. Remarkably, the second term
Eq. ~5.13! then depends only on the static dielectric const
of the fluid.

VI. DISCUSSION

We have shown that the torque on a charged sphere r
ing in a dielectric fluid in the presence of a uniform magne
field is enhanced significantly from its vacuum value if t
fluid is strongly polar. In view of the often disputed que
tions concerning the correct expression for the electrom
netic stress tensor in a polarizable medium@13,16–18#, it
would be of interest to compare our theoretical predict
with experiment. In our opinion, there is a need for expe
mental verification of the theoretical expressions for all fo
transport coefficientsz t ,z r ,ht ,hr , considered in the Intro-
duction. The relaxation of polarization of the fluid caus
dielectric friction with corresponding dissipative contrib
tions to the friction coefficientsz t and z r . The Hall coeffi-
cientsht andhr are nondissipative. For slow motion they a
determined by the static dielectric constant of the fluid.

We suggest experimental study of the slow macrosco
rigid body motion of a charged sphere in a viscous dielec
fluid such as water in the presence and absence of an ap
magnetic field. For example, one could study the settling o
e-
in
t

at-

g-

n
-
r

s

ic
c
ied
a

charged sphere in gravity in the presence of a horizo
magnetic field. In such a situation, the Lorentz force cause
deviation from the vertical in proportion to the translation
Hall coefficientht . If in addition the sphere rotates, for ex
ample, because it rolled down an incline before falling in
the liquid, then the Lorentz torque, calculated above, affe
the rotation. The sphere may have a nonconducting insu
ing shell. We predict an effect on the rotation, even if t
charge is located at the center of the sphere.

A numerical estimate of the torque shows that its eff
should be detectable. For example, consider a sphere o
dius a51 cm, with chargeQ530 esu, rotating with angula
velocity V5102 sec21 in a magnetic fieldB5104 G. Then
the product Qa2VB/c in Eq. ~5.12! takes the value
1023 dyn cm. In water with static dielectric constant«0
580 this is the order of magnitude of the torque for a
spherical distribution of the charge, since then the rotatio
Hall number in Eq.~5.13! is of order unity. Although the
torque is not large, it should be measurable. A conceiva
experimental situation might involve a charged sphere ro
ing about an axis perpendicular to a strong magnetic fie
The torque is perpendicular to both the magnetic field a
the axis of rotation or viscous torque, and tends to tilt t
axis. The Lorentz torque or the tilt should be measured. S
a measurement would provide a welcome test of the the
-
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